

Overview of Asphalt Research Program

Michael M. Sprinkel P.E. Associate Director

Highly Polymer Modified Binder Ben Bowers

- Polymer modified binder increases elasticity and performance
- Traditionally allow up to 2.5-3.5% polymer by weight
- New polymer allows for 7.5% polymer by weight,

increasing elasticity

- May help performance
 - Reflective crack mitigation
 - Rutting resistance
 - Thin-lift applications
 - Longer lasting pavement

Highly Polymer Modified Binder

- 7.5% being polymer asphalt mixture was placed in Northern Virginia District on 8/28/2014
- No major changes to construction process
- Lab testing being conducted at VCTIR
 - Preliminary test results are promising
- Already looking at two future projects

NCHRP 9-51 Brian Diefenderfer

- Material Properties of CIR and FDR for Pavement Design
- Partners

University of MD, VDOT, Colas Solutions,

Wirtgen

- Project locations (22)
 - California, Colorado,
 Delaware, Edmonton,
 Georgia, Illinois, Kansas,
 New York, Ontario, Utah,
 Washington, West Virginia

Example Results

Influence of Aggregate Morphology & Grading on Performance of Small-Size SMA Mixtures Steve Lane, Hari Nair, Linbing Wang

- Goal: Examine grading specs for the design of small-size SMA mixtures and the impact of aggregate morphology on the structural stability of the mixture
- Characterize aggregate particle shape, angularity, and surface texture
 - Apply LADAR (laser-based imaging) system
 - Comparison with conventional methods
- Mixture stability evaluation
 - Model-mobile loading simulator (MMLS3), fatigue testing, dynamic modulus and flow number 6

Aggregate Morphology/Grading – "Small-Size" SMA

Quiet(er) Pavements (Code of Virginia § 33.1-223.2:21) Kevin McGhee

Tire/Pavement Noise

- Difference between lowest-noise QP and control surfaces:
 - After first winter tire-pavement noise levels were readily noticeable (≥ 5dB); asphalt & concrete
- Over past two winters, noise intensity levels have:
 - decreased slightly for concrete technologies
 - increased slightly for asphalt technologies

Quiet Pavement – Winter

SMA

Quiet Pavement

Quiet Pavement – Wet Weather

SMA

Quiet Pavement

Final Report – June 2015

- To include (Virginia Code):
 - "...a plan for routine implementation of quiet pavement..."
- To include (Objective Evaluation):
 - Expected performance noise reduction and its duration, friction, etc.
 - Expected costs material, maintenance (winter & other), and safety
 - Recommended use and other considerations

Support for AQTF

Title:

AN ASSESSMENT OF INCENTIVE-ONLY RIDE SPECIFICATION FOR ASPHALT PAVEMENTS

Research Team:

Harikrishnan Nair, Kevin K. McGhee, and Affan Habib

Objective:

Document and critically review the pilot application of the incentive only provision for rideability on selected asphalt resurfacing schedules for the 2013 construction season.

Asphalt Pavement Research Program

Thank You Questions

